OSI model | |
---|---|
7. Application layer | |
NNTP · SIP · SSI · DNS · FTP · Gopher · HTTP · NFS · NTP · SMPP · SMTP · SNMP · Telnet · DHCP · Netconf · RTP · SPDY · (more) | |
6. Presentation layer | |
MIME · XDR · TLS · SSL | |
5. Session layer | |
Named pipe · NetBIOS · SAP · L2TP · PPTP · SOCKS | |
4. Transport layer | |
TCP · UDP · SCTP · DCCP · SPX | |
3. Network layer | |
IP (IPv4, IPv6) · ICMP · IPsec · IGMP · IPX · AppleTalk | |
2. Data link layer | |
ATM · SDLC · HDLC · ARP · CSLIP · SLIP · GFP · PLIP · IEEE 802.3 · Frame Relay · ITU-T G.hn DLL · PPP · X.25 · Network switch | |
1. Physical layer | |
EIA/TIA-232 · EIA/TIA-449 · ITU-T V-Series · I.430 · I.431 · POTS · PDH · SONET/SDH · PON · OTN · DSL · IEEE 802.3 · IEEE 802.11 · IEEE 802.15 · IEEE 802.16 · IEEE 1394 · ITU-T G.hn PHY · USB · Bluetooth · Hubs |
Intermediate System To Intermediate System (IS-IS), sometimes called is-is, is a routing protocol designed to move information efficiently within a computer network, a group of physically connected computers or similar devices. It accomplishes this by determining the best route for datagrams through a packet-switched network. The protocol was defined in ISO/IEC 10589:2002 as an international standard within the Open Systems Interconnection (OSI) reference design. Though originally an ISO standard, the IETF republished the protocol as an Internet Standard in RFC 1142. IS-IS has been called "the de facto standard for large service provider network backbones."[1]
Contents |
IS-IS (pronounced "i-s i-s") is an interior gateway protocol, designed for use within an administrative domain or network. This is in contrast to Exterior Gateway Protocols, primarily Border Gateway Protocol (BGP), which is used for routing between autonomous systems (RFC 1930).
IS-IS is a link-state routing protocol, operating by reliably flooding link state information throughout a network of routers. Each IS-IS router independently builds a database of the network's topology, aggregating the flooded network information. Like the OSPF protocol, IS-IS uses Dijkstra's algorithm for computing the best path through the network. Packets (datagrams) are then forwarded, based on the computed ideal path, through the network to the destination.
The IS-IS protocol was developed by Digital Equipment Corporation as part of DECnet Phase V. It was standardized by the ISO in 1992 as ISO 10589 for communication between network devices which are termed Intermediate Systems (as opposed to end systems or hosts) by the ISO. The purpose of IS-IS was to make possible the routing of datagrams using the ISO-developed OSI protocol stack called CLNS.
IS-IS was developed at roughly the same time that the Internet Engineering Task Force IETF was developing a similar protocol called OSPF. IS-IS was later extended to support routing of datagrams in the Internet Protocol (IP), the Network Layer protocol of the global Internet. This version of the IS-IS routing protocol was then called Integrated IS-IS (RFC 1195).
Both IS-IS and OSPF are link state protocols, and both use the same Dijkstra algorithm for computing the best path through the network. As a result, they are conceptually similar. Both support variable length subnet masks, can use multicast to discover neighboring routers using hello packets, and can support authentication of routing updates.
While OSPF is natively built to route IP and is itself a Layer 3 protocol that runs on top of IP, IS-IS is natively an OSI network layer protocol (it is at the same layer as CLNS). The widespread adoption of IP worldwide may have contributed to OSPF's popularity. IS-IS does not use IP to carry routing information messages. IS-IS is neutral regarding the type of network addresses for which it can route. OSPF, on the other hand, was designed for IPv4. This allowed IS-IS to be easily used to support IPv6. To operate with IPv6 networks, the OSPF protocol was rewritten in OSPF v3 (as specificed in RFC 2740).
IS-IS routers build a topological representation of the network. This map indicates the subnets which each IS-IS router can reach, and the lowest-cost (shortest) path to a subnet is used to forward traffic.
IS-IS differs from OSPF in the way that "areas" are defined and routed between. IS-IS routers are designated as being: Level 1 (intra-area); Level 2 (inter area); or Level 1-2 (both). Level 2 routers are inter area routers that can only form relationships with other Level 2 routers. Routing information is exchanged between Level 1 routers and other Level 1 routers, and Level 2 routers only exchange information with other Level 2 routers. Level 1-2 routers exchange information with both levels and are used to connect the inter area routers with the intra area routers. In OSPF, areas are delineated on the interface such that an area border router (ABR) is actually in two or more areas at once, effectively creating the borders between areas inside the ABR, whereas in IS-IS area borders are in between routers, designated as Level 2 or Level 1-2. The result is that an IS-IS router is only ever a part of a single area. IS-IS also does not require Area 0 (Area Zero) to be the backbone area through which all inter-area traffic must pass. The logical view is that OSPF creates something of a spider web or star topology of many areas all attached directly to Area Zero and IS-IS by contrast creates a logical topology of a backbone of Level 2 routers with branches of Level 1-2 and Level 1 routers forming the individual areas.
IS-IS also differs from OSPF in the methods by which it reliably floods topology and topology change information through the network. However, the basic concepts are similar.
OSPF has a larger set of extensions and optional features. However IS-IS is less "chatty" and can scale to support larger networks. Given the same set of resources, IS-IS can support more routers in an area than OSPF. This has contributed to IS-IS as an ISP-scale protocol.
The TCP/IP implementation, known as "Integrated IS-IS" or "Dual IS-IS", is described in RFC 1195.